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Abstract Al
We introduce a family of heuristics, based on spacefilling curves,

to solve general combinatorial problems in the plane, such as routing,

location, and clustering. These remarkably simple and fast heuristics

are nonetheless fairly accurate and so seem well-suited to operational

problems where time or computing resources are limited. They ignore many

details of the problem, yet generate solutions that are good simultane-

ously with respect to a variety of measures. (This may be useful when

the problem specification is incomplete or cannot be agreed upon.)

Furthermore they are extremely simple to code, and in some cases may even

o
be implemented without a computer.

* 0
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0. Introduction

In Bartholdi and Platzman (1982), we introduced spacefilling curves as

the basis for an extremely fast heuristic to solve the travelling sales-

man problem in the plane. The usefulness of this heuristic is demon-

strated in Bartholdi et al. (1983), wherein is described the implementa-

tion of a commercial routing system so simple that it requires no com-

puter. (It consists of two Rolodex" card files, and is being used for

the daily routing of four vehicles to 200-300 locations.) Here we

provide a detailed discussion of the principles underlying spacefilling

methods, and we extend our earlier work in two ways. First we suggest a

more general application of spacefilling curves to the solution of a

variety of combinatorial problems in the plane. Then we discuss the

relative merits of different spacefilling curves, and show how to design

a "best" one.

0
Consider a combinatorial problem in which are given n points in the

unit square together with a specified metric. (The coordinates of each

point are assumed to be given to fixed, prespecified accuracy.) The

0 0
problem asks for some combinatorial structure of maximal or minimal cost.

Examples include the travelling salesman problem, the matching problem,

the K-median problem, etc. Many such problems are inherently difficult;

for example, the Euclidean travelling salesman problem is NP-complete

(Garey and Johnson (1980) and Papadimitriou (1977)). Other planar prob-

lems such as matching may have formally efficient solution techniques

that are nevertheless unsuited for somo real-time operational environ-

ments (Avis (1983) and Bartholdi and Platzman (1983)). We suggest a

family of fast heuristics, based on spacefilling curves, for these problems.
9

A spacefilling curve is a continuous mapping of the unit interval

onto the n-dimensional unit hypercube. (See Figures I and 2 for examples

0
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Figure 1: Geometric construction of some spacefilling curves
in the unit square. Each curve is the limit of a
sequence of recursive constructions.
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Figue 2:These spacefilling curves are paths, not circuits,

through the unit square. i
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in two dimensions.) Such curves were first introduced by the mathemati-

cians Peano (1890), Hilbert (1891), and Sierpinski (1912) as "topological

monsters," since it seems contrary to intuition that a lower-dimensional

space can be mapped continuously onto a higher-dimensional space. Since

then, spacefilling curves have continued to interest mathematicians and

computer scientists for their elegant recursive structure, and for the

surprise and visual delight they afford. They are part of the family of

fractal curves discussed in detail by Mandelbrot (1983), who has done ]

much to stimulate interest in them.

Spacefilling curves may be defined in any dimension. However, for

ease of exposition, we shall discuss them as continuous mappings from the

unit interval onto the unit square. All of the ideas we present are

easily generalized to n dimensions.

A property of spacefilling curves that is crucial to our purpose is*
that they tend to preserve "nearness" among points. If two points are

close on the curve, then they are close in the plane. Conversely, if two

points are close in the plane, then they are likely - note the qualifier!

*0
- to be close on the curve. This tendency to preserve nearness is due to

the highly convoluted shape of a spacefilling curve; it tends to visit

all the points in one region of the plane before travelling to a new

region. S

These properties of spacefilling curves suggest the following idea:

transform the problem in the unit square, via a spacefilling curve, to an

easier problem on the unit interval; then solve the easier problem and

take that solution as a heuristic solution to the original problem.

Combinatorial problems are generally easier when posed on the unit inter-

val than when posed in the unit square. The spacefilling curve enables

4



us to model the unit square in a simple way while tending to preserve

nearness among points. Since the common combinatorial problems have

objective functions that depend on nearness, the problem on the unit

interval will tend to be faithful to the original problem in the most

important way. Hence the following.

GENERIC HEURISTIC

Step 1: Transform the problem in the unit square, via a spacefilling

curve, to a problem on the unit interval.

Step 2: Solve the (easier) problem on the unit interval.

This is actually a whole family of heuristics, depending on the

combinatorial optimization problem, the particular spacefilling curve,

and the implementation of Step 2.

For this heuristic to be useful, the transformation via a space-

filling curve must be easily computable. In fact the transformation is .

quick and straightforward for each of the spacefilling curves we studied.

If the coordinates of each point are given to k-digit accuracy, only

O(kn) elementary steps (+,,*,/) are needed to accomplish Step 1. (And, 0

in fact, the multiplication and division are exclusively by a constant

which depends only on the spacefilling curve and not on the problem

instance. For the curves we studied, this constant is 2 or 3.) Table 1

gives a pseudo-Pascal program to compute, for any point in the unit

square, a corresponding point on the unit interval determined by the

spacefilling curve of Figure 1A. Figure 3 shows a point set transformed 0

via this curve. Descriptions of how to compute other curves and their

inverses may be found in Bially (1969), Butz (1971), and Patrick et al.

(1968). 0

5 0



Let (X,Y) be a point in the unit square; POSITION(X,Y) is a corresponding
point on the unit interval.

Function POSITION(XY)

if X = I and Y = I then RETURN(0.5)
Q = NV(MIN(INT(2*X), I),MIN(INT(2*Y), 1))

{Q identifies the quadrant
containing (X,Y)}

T - POSITION(2*ABS(X - 0.5),2*ABS(Y - 0.5) c

{T is the position along the

subcurve in quadrant Q}
if MOD(Q,2) - 1 then T - 1 - T

{Visit the vertices of a
quadrant clockwise}

RETURN(FRACT((Q + T)/4 + 7/8)) q

where

ABS(A) A if A 0, -A if A 4 0,
INT(A) - the largest integer not larger than A,
FRACT(A) - A - INT(A),
MIN(A,B) - A if A 4 B, B if A > B,
MOD(A,B) - B*FRACT(A/B),
NV(X,Y) = the 'number' of vertex (X,Y) of the unit square, counting

clockwise from the origin, i.e., Nv(0,0) = 0, Nv(0,1) = I,

W,(l,l) 2, Nv(l,0) = 3.

Table 1: An algorithm to compute a position on the unit interval that

corresponds (under the curve of Figure IA) to a given point on

the unit square.

6
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Figure 3: A point set in the plane transformed to a point set on the
line via the spacefilling curve of Figure 1A. Clusters of
points tend to be preserved since the curve is continuous.
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In Sections 1 and 2 we illustrate implementations of the generic

heuristic for several problems. Section 3 gives a very general perfor-

mance analysis. In Section 4 we consider the question of finding the -

"best" spacefilling curve, and provide a method to compute customized

curves for specific applications. Concluding remarks are given in

Section 5.

1. Routing problems and spacefilling curves

Implicit in most routing problems is the planar travelling salesman 0

problem: given n points, which we take to be in the unit ' find the

shortest circuit connecting all the points. Bartholdi a - Platzman

(1982) suggested a heuristic for the planar travelling sale... problem,

of which this work is a generalization. That heuristic was based on a

specific curve (Figure 1A). A more general statement of that algorithm

is 0

ALGORITHM TSP

Step 1: For each point calculate, via a spacefilling curve, a 0

corresponding position on the unit interval.

Step 2: Sort the points according to their corresponding positions
on the unit interval.

This heuristic simply visits the points in the same order as does the

spacefilling curve, and so may be implemented by straightforward sorting.

The spacefilling curve may be thought of as the route of an obsessive

salesman who visits every point in the unit square. The heuristic route

visits only the required points, but in the same sequence as they appear

along the spacefilling curve. (See Figure 4.) 0

0 8
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The performance of this heuristic for the specific curve of Figure

IA is analyzed in detail in Platzman and Bartholdi (1983). We summarize

the attractive features of that algorithm since they are typical of the

generic algorithm. First the heuristic is abstemious in its data re-

quirements: only the O(n) coordinates of the points to be visited are

II 2
necessary. In fact the O(n ) distances between points are ignored! By

ignoring so much of the problem data, such as the metric and the distri-

bution from which the points are drawn, the user is freed from the

expense of collecting that information. The algorithm is extremely fast:

it consists essentially of sorting, and so can be implemented to run in

O(n log n) steps (worst-case), and O(n) steps (expected case). The 0

algorithm is agile in that it can quickly update solutions in response to -

small changes in the problem: points may be inserted into or deleted

from the heuristic tour within 0(log n) steps. (By constrast, solutions

generated by other methods may need to be entirely re-solved when the

problem changes.) Finally, the heuristic is trivial to code, requiring

only about 20 lines of BASIC.

Of course an algorithm that ignores so much of the problem cannot

hope to be exceptionally accurate and, indeed, this heuristic is only

fairly accurate. For uniformly distributed points it produces tours that

are 25% beyond optimum when measured by the Euclidean metric (almost

surely, as n gets large). The worst-case ratio (heuristic tour length/

optimum tour length) is no more than 0(log n), and we suspect that this

can be improved to 0(l).

In general the algorithm seems well-suited to operational problems

in which time and computing resources are limited. For example, a ver-

Ii -.- 10



sion of this heuristic might be used to "route" naval gunfire among tar-

gets. The ability to qv4 ckly update solutions could be critical in such

an application.

Another possible application would be to assign zip codes according

to a (quantized) spacefilling curve. Then not only would locations with
* 0,

similar zip codes be close, but also close locations would tend to have

similar zip codes. This could be useful in, say, parcel delivery, for a

good route could be constructed by simply visiting the locations from

smallest to largest zip code. 4

Another use is suggested in Bartholdi and Platzman (1983). A

heuristic for matching is to simply choose every other edge of the

heuristic TSP tour. This gives good solutions quickly, and so may be

useful in controlling the movement of a mechanical plotter pen in real-

3
time. (The fastest known optimum-finding algorithm can require O(n3 )

steps, which may be too time-consuming.)

2. Location/Clustering problems and spacefilling curves

The planar K-median problem is to choose, from among n given points,

K of those points to be "medians", so as to minimize the sum of distances

from each point to its closest median. This problem arises, for example,

in choosing locations for distribution or service centers in a geographi-

cal region. It has been studied by Fisher and Hochbaum (1980) and by

Papadimitriou (1981), who established the NP-completeness of the

Euclidean problem.

We suggest two versions of the generic heuristic. Both are stated

in their simplest form; they can be made more accurate, at the cost of

extra computation, by including more powerful subroutines.

ii -*: .-

I
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The first is a fixed partition scheme.

ALGORITHM K-MEDIAN 1

Step 1: For each point calculate, via a spacefilling curve, a
corresponding position on the unit interval.

Step 2: Solve the K-median problem on the unit interval;
!. 20.

Divide the interval into K identical subintervals;
Choose the medians to be those points closest to the centers .

of the subintervals.

0
The second version is a variable partition scheme. It consists of

replacing Step 2 with the following.

Step 2': Solve the K-median problem on the unit interval;

Choose the medians to be the K-dian points (i.e. every n/Kth

point)

Both of these heuristics require only 0(n) data. A straightforward

implementation of the first heuristic requires 0(n) steps in the worst- . -

case. The second heuristic consists essentially of sorting, and so may -

be implemented to require 0(n log K) computational steps (worst-case) and

0(n) steps (expected case). Again solutions produced by either heuristic

may be updated quickly.

Figure 5 shows the solution produced by algorithm K-median I on a

set of random points. Typically, it is fairly good at identifying

clusters of points; it is less guod at choosing the best median for a

cluster.

12 s- .- - - - - - - - - -
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The K-center problem is to choose K of the n points so that the

maximum distance between any point and its closest center is minimized.

This problem is not known to be NP-complete when restricted to the plane,

but has been conjectured to be so by Papadimitriou (1981). The K-median

algorithms given above may be used, unchanged, for this problem toc.

Alternative versions of the K-median and the K-center problems have

been studied by Megiddo and Supowit (1984). They show that when the

medians/centers are allowed to be arbitrary points, not necessarily among

the original point set, then the problems are NP-hard under either the

Euclidean or rectilinear metric. The analogous problems on the unit

interval are easier however: the K-median problem on the interval is

2
solvable in 0(n K) time (Megiddo et al. (1983)) and the K-center problem

is solvable in 0(n log n) time (Megiddo et al. (1981)). The exact solu-

tion procedures for the interval may be used as the implementation of

step 2 in the generic heuristic, with presumed consequent improvement in

accuracy.

Spacefilling curve techniques might be useful in very general

problems that require the identification of clusters of points. Duran - -

and Odell (1974) give a survey of cluster analysis, in which is discussed

a variety of measures of "nearness" for points in space of arbitrary

dimension. These are used to formalize notions of "similarity" of data

points. Since the K-median/center heuristics ignore the actual metric,

but nevertheless captures "nearness", they may be expected to produce

solutions that are reasonably good with respect to many of these measures

simultaneously. This could be of special use to statisticians, who may -

not agree on the appropriate measure of "similarity" ("nearness").

14



3. Performance Analysis

In this section, we give a very general performance analysis of the
1_ 0

generic spacefilling heuristic which suggests that it may be effective in

solving a wide variety of combinatorial problems in the plane.

Consider the problem of selecting, from a given complete graph, a

subgraph of given structure and minimal total weight. An instance of the

problem is specified by a set of points P and a metric (distance measure)

D. The nodes of the graph correspond to the points in P and the edges

are labeled with distances determined by D. We denote by V*(P,D) the

value of the optimal subgraph, that is, the sum of its edge weights. To

each problem type (TSP, matching, spanning tree, etc.), there corresponds

a particular function V*. The heuristic selects a subgraph of proper

structure whose total weight is small but not necesarily minimal. Its

value is denoted by V(P,D).

A norm N-1 is a measure of a vector's magnitude. It satisfying 0

I ap n = a Ip for all scalars a and vectors p. A metric may be induced

norm via D(p,p') = lp-p'l; it is then unaffected by shifts,

D(p+q,p'+q) - D(p,p'), and it responds linearly to changes of scale,

D(ap,ap') - a D(p,p'). (However, it may be affected by rotation.)

Euclidean, rectilinear, and Chebychev distances are all examples of

normed metrics.

A spacefilling curve ,, mapping the unit interval C [ (0,1] onto the

2
unit square S [0,1] , is said to be recursively defined if, for some m,

its path over each subsquare of side 1/m is similar to its path over S

(but scaled by a factor of m and possibly rotated). At the k-th level of

-k
recursion, subsquares have sides of length m . Although the curve may

enter and leave a subsquare more than once, its path during any particu-

15



lar visit to a subsquare must span a region whose area is at least a

fraction a of the area of the subsquare. (The curve in Figure IA visits

subsquares at most twice, and covers at least 1/2 the area of a subsquare

on each visit.)

The notion that a spacefilling curve preserves nearness may now be

formalized.

LEMMA I. If 4 is a recursively-defined spacefilling curve and D is a

norm-induced metric, then there is a constant c such that

-2k

Proof. Let k be the largest integer such that a m ) 16-O'I. Then

-2(k+l)I-e'I ma , or equivalently,

m-k 4ma-1/2()

-k
If S is partitioned into subsquares of side m , then C may be divided

-2k
into subintervals of length at least a m such that the image under

of any subinterval lies entirely within a subsquare. Since e-e'I is

bounded above by the shortest subinterval length, 8 and 8' must lie 0

-k
within adjacent subsquares. So D(*(9),*(8')) < 2m W, where W is the

largest distance between two points in S. With (1), this completes the

proof.

[]

For the particular case of 4 as in Figure IA and D Euclidean

distance, Platzman and Bartholdi (1983) showed that c - 2.

It is easy to show that the heuristic TSP tour is 0(/-n). Let

N be the distances (in C) between consecutive O's in the sorted

list. Since C has length one,

16 0
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and by Proposition 1,

heuristic tour length 4 E cVA .

This upper bound achieves its maximum at A, = I/N, so

* °heuristic tour length 4 c/N.

We now show that, for a much more general class of problems, the

spacefilling heuristic produces 0(/n) solutions.

A problem is called subadditive if, for any partition Z of S (the 0

cells GEE need not be identical nor even have equal areas) there is a y

such that

V*(P,D) C Z [V*(P n a,D) + y max {D(p,p'): p,p'€a}].
GEE

£ •
This says that the problem may be partitioned in any way, solved locally,

and patched together with a penalty that depends only on the partition E.

Examples of subadditive problems include TSP, matching, minimum spanning

tree, and k-median for k - a n.

If the problem to be solved on the line (in Step 2 of the

spacefilling heuristic) is not a travelling salesman problem then we must
S

take explicit note of the metric (on C) to be used. The following

assumes that this metric is / and that the problem on the line is

solved exactly.

PROPOSITION 1. The spacefilling heuristic provides O(/ n) solutions to

subadditive problems with norm-induced metrics.

17S
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Proof. Let A(p,p') /FeV where p = (A) and p' = (e'). A is a -

metric (but not a norsed metric). By Lemma 1, D(p,p') ' cA(p,p'), so

V*(P,D) 4 V(P,D) 4 cV*(P,A). We show that V*(P,A) = 0(,Fn) so that the

same is true of V(P,D). Partition C into N subintervals, each containing

IP only one 9 value. Let Ai be the subinterval lengths. Project the

subintervals onto S via to obtain a partition of S. By subadditivity,

V*(P,A) < E YCV'T

i

since V* (a single point, -) = 0 and max (A(p,p'): p,p' e p(I)} c/a

when I is a subinterval (in C) of length A. By concavity of v .,

* ~~V*(P,A) yvN

Stochastic analysis shows that the generic spacefilling heuristic

produces solutions that are close to optimal in a certain sense. Suppose

that p1 ,p2,... is a sequence of independent uniformly distributed points

on S. Let P = {P ''''PN}. For a general class of subadditive

problems, Steele (1981) proves that there is a 8* such that

V*(?N' Euclidean metric) 0
- • * 8* a.s.•

Steele's proof is readily extended to general normed metrics. In any

case, if

18
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* 0

V*(PN,D) -

8* a.s.

then, by Proposition 1, there is an R such that

lrn sup V(PND) -
l R a.s.

V*(PN,D)

Thus the generic spacefilling heuristic produces solutions which are •

likely to be within a given constant factor of optimal when N is large.

(For the Euclidean TSP, we have estimated this factor to be 1.25.)

4. What is the best spacefilling curve?

The generic heuristic may be implemented with any spacefilling

curve. However, the quality of solutions may be different for different
i

curves. For example, we tested the travelling salesman heuristic on

random point sets for each of the spacefilling curves of Figures 1 and 2.

For each of these curves it can be proven that, for random point sets

drawn from a sufficiently smooth distribution over the unit square, the

variance of (heuristic tour length/rn vanishes almost surely as n gets

large. (See Platzman and Bartholdi (1983) for a proof for the curve of

Figure IA.) Note that, unlike the optimal tour length, expectation of

this ratio need not converge. However our tests for n up to 1,000

suggest that their first several decimal digits are nearly equal. In any -

case, by results of the previous section, they are bounded by a constant.

Consequently, for the purpose of comparing the performances of various

curves, we shall speak of the ratios (heuristic tour length //n) for each

curve as if they converged rapidly to some 8. We estimated B for the

19



curves of Figure 1 to be 0.96, 0.98, and 1.1.2 respectively. For the

curves of Figure 2, we estimated 8 to be 1.10 + i//, and 1.12 + I/An

respectively, where the latter terms represent the distance necessary to

close the path to form a circuit. (This additional distance makes these

curves unsuitable for the travelling salesman problem when n is small.)

This may be compared to the result of Beardwood, Halton, Hammersley

(1959), who prove that the ratio (optimum tour length//n) approaches 8*

almost surely as n gets large, where 8* has been estimated to be 0.765.

A curve with small 8 is to be preferred, since it tends to produce

shorter tours. Accordingly, for the travelling salesman problem we may

consider the curve of Figure IA best. It is more "homogeneous", and

therefore performs well for homogeneously random point sets. The curve

of Figure IB is the same curve in the limit, but the finite version

performs slightly less well than 1A. The curve of Figure 1C has fewer

axes of symmetry and so performs still less well.

The curves of Figure 2 are paths rather than circuits, so that, for

small problems they tend to link the first and last points inefficiently,

and so produce less accurate solutions. However, for sufficiently large

n, these differences tend to disappear. The asymptotic performances of

all the curves are similar because locally they tend to resemble each

other.

We also tested the algorithm using spacefilling curves which are

not, strictly speaking, curves. They are not curves because they are not

continuous. (See Figure 6.) However, because of their recursive

structure, they tend to enjoy, although to a lesser extent, the

"nearness-preserving" of spacefilling curves. For the two curves ol

Figure 6 we estimated 8 to be 1.12 + /V2T and 1.37 + /-2/n, respectively.

20S
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Figure 6: These recursive structures are not, strictly

speaking, curves, since they are not continuous.
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Their relatively poor performance confirms the intuition that continuity

is essential to effectively model nearness.

The heuristic can even be implemented with "curves" that are

discontinuous everywhere, such as the one illustrated in Figure 7, for

which 8 was estimated to be 1.99 + (1/3)V2/n. It is surprising that any

such recursively-defined "curve" enables the algorithm to perform well

(in the sense that the average heuristic solution grows at the same rate

as the optimum as n gets large).

What is the best spacefilling curve? For the aforementioned reasons

of symmetry and homogeneity, we think the curve of Figure IA is best for

combinatorial problems on uniformly distributed points. Even for smooth

distributions the curve tends to perform fairly well since, within small

regions, the distribution tends to appear uniform. However, in general,

other curves may give better performance. To say more than this we must

reconsider the role played by the spacefilling curve.

The essential contribution of the spacefilling curve is simply to

provide a linear ordering of all the points in the plane. The generic

algorithm could be implemented with any linear ordering that could be

computed or looked up quickly. But, to be most effective, the linear

ordering should be tailored to the distribution from which the problem
S

instances are drawn.

In general we might be willing to spend considerable effort to

design an effective spacefilling curve for a particular problem, since

this is a design problem and so needs to be sol-ed only once.

Afterwards, our operational problems will be solved quickly and

accurately by the generic heuristic, and this good performance will

amortize the design costs.

22 0
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Figure 7: Recursive construction of a "curve" that is
discontinuous everywhere. For clarity, the structure
of the "curve" is indicated by numbers instead of lines.
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Let us consider a finitized version of the design problem. Suppose

that a finite set of points in the unit square is distinguished. Over

subsets of the distinguished points is defined some distribution from

which instances of a combinatorial problem are drawn. The generic

algorithm may be implemented via any linear ordering of the distinguished

points, given, for example, by a simple list. To emphasize the

application to finite point sets we refer to a linear ordering used to

implement step I of the generic heuristic as a "presequence". The

effectiveness of any particular presequence is measured by the expected

value of the objective function, over all instances of the problem, when

the generic algorithm is implemented with that presequence. We want a
I0

presequence for which the generic algorithm produces the best solutions

(on the average).

An idea similar to presequencing has been used by Iri, Murota, and
* S

Matsui (1983) in a heuristic for planar matching. However, the

presequences they studied (Figure 8) are not spacefilling curves, and in

particular are not circuits, and so do not model the plane as well as

they might. Indeed, the spacefilling curve of Figure IA, when used in

their algorithm, performed better than either of the presequences of

Figure 8. An additional disadvantage of the presequences of Figure 8 is

that they are not recursively constructed. Thus they are likely to

perform poorly (relative to the optimum) for non-uniform distributions of

points. Finally, since these presequences depend on the number of points

in t',- problem instance, heuristic solutions are not so easy to modify as

those based on spacefilling curves (whose structure is independent of the

problem instance).
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Figure 8: Two presequences that have been used in related work.
They do not work as well as they might since they are
not circuits, and they are not recursively constructed.
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Unfortunately, it can be hard to determine the best presequence. In

the worst case, if all of the points occur in a problem instance with

0
probability 1, then finding the best presequence is equivalent to solving

an instance of the combinatorial problem. Nevertheless, it is possible

to construct presequences that are effective, if not optimal. Given a

class of problem instances and a specified combinatorial problem, one can

design a good presequence by an interchange heuristic. (For a general

discussion of interchange methods, see Papadimitriou and Steiglitz ]
(1982).)

ALGORITHM K-INTERCHANGE

Step 0: Begin with an initial presequence, and designate it the current 0

best. Set M - 0.

Step 1: Interchange a random selection of k precedences of the
presequence to form a new presequence.

Step 2: Estimate its performance by solving a sufficiently large random
sample of problems with the generic heuristic. If the new
presequence gives improved performance, then choose it as the
current best and set M = 0.

Step 3: Set M = M + 1. If M < M then return to Step 1.
max

We tested an implementation of this heuristic to design effective

spacefilling curves for several different travelling salesman problems.

We chose problems defined as follows: suppose that a finite grid of

points in the plane is distinguished, and that to each point j there

corresponds a probability p(j). Each point j occurs in a problem

instance independently with probability p(j). (Note that this

independence assumption is not necessary to apply the method; this was

simply a convenient way of generating sample problems.) We implemented

the design heuristic as a 3-interchange.
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In analyzing the presequences produced, we noticed an interesting

i phenomenon. In regions where many points had a p(j) near 1, the

presequence tended to have many straight segments. This makes sense

since, because of the large p(j), the design problem became almost a

travelling salesman problem. (If all p(j) - 1, the design problem is

exactly a travelling salesman problem on the grid of points.) On the

other hand, in any region with many points with small p(j), the

presequence tended to be highly convoluted because it was "hedging".

(See Figure 8.) The presequence was uncertain which, if any, of the

points in that region would be next in a random problem. The smaller the

p(j)'s within a region, the more the presequence hedged, and the more

convoluted it became.

The phenomenon of hedging relates to the structure of spacefilling

curves in an interesting way. Let all of the distinguished points have

the same probability p(j) - p. Then as the number of points gets large

and p gets small (with np constant), the optimal presequence becomes

extraordinarily convoluted as it hedges among many points with tiny

probabilities. In fact, the hedging of the presequence becomes the

non-differentiability of a spacefilling curve.

A possible use for this might be in the area of warehouse

operations. It is common for retrieval to be sequenced by simply

visiting storage bins according to their bin number. If the bins were

numbered according to the best presequence, the performance of this

retrieval strategy could be enhanced. Figure 9 shows , wall of bins

along a warehouse aisle with an idealized bin-numbering sequence

suggested by our computer simulations. Notice that near the front of the

warehouse aisle, where are stored the most frequently requested items, 
0

the presequence tends locally to be a travelling salesman tour. Farther
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along the aisle, where are stored the progressively less-often-requested

items, the presequence hedges increasingly. Finally, at the end of the|0
aisle, the presequence clearly resembles a (quantized) spacefilling

curve. (Note: Due to edge effects and alternative optima, our

simulation did not produce the exact curve as Figure 9. However, the

increased hedging among low probability locations was clearly

recognizeable, and Figure 9 idealizes that.)

5. Concluding Remarks S

We have observed that, for many combinatorial problems in the plane,

the generic heuristic tends to produce solutions that grow at the same

rate as the optimum solution. If we consider this property "decent",

then we can say that the generic heuristic gives decent solutions for

many different problems. Moreover, a specific implementation of the

generic heuristic may give solutions which are decent simultaneously for 0

many different objective functions and for many different metrics. This

is because the heuristic tends to produce solutions based on "nearness"

0 and not on a specific metric. In fact, because of the simplicity of the 0

problem on the line, the implementation of step 2 is frequently

independent of the metric in the plane and sometimes even independent of

the precise form of objective function. This robustness of solution may j

be especially useful for ill-defined problems. Thus, one might say, if

decisions must be made quickly, but one is not sure of the objective or

the data, then use a spacefilling curve-based heuristic.

An interesting multiple application of spacefilling curves concerns

a hierarchical routing system, that uses the generic heuristic to first

recognize clusters of locations, and then to route a vehicle through each 0

28
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Figure 9: A wall of bins along a warehouse aisle numbered in an
effective sequence. The curve becomes increasing .

convoluted as it "hedges" among the low probability items. .
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cluster. We have used this idea to quickly analyze and improve the

routing system of a commercial package courier service in Atlanta,

Georgia. The true metric of the problem, travel times, varied with the

time of day and the day of the week, and so was too complex to be useful

(or even knowable). The generic heuristic ignored this metric and yet

tended to do well (we think!). At least it was a clear improvement over

what had been done previously.

Some researchers consider the ultimate test of a method to be its

ability to catch a lion (Stewart and Jaworski (1981)). For example, to

catch a lion by binary search, start with all of Africa and bisect,

retaining the half that contains a lion, until the remaining area is the

size of a cage; it will contain a lion. To satisfy these readers we

offer two ways to catch a lion by spacefilling methods. First, grab a

spear (or a net) and run through Africa along the path of a spacefilling

curve; you will catch at least a lion. Alternatively, map Africa onto

the interval, and stand at e = 0 facing e 1 1; you will see the lion

directly ahead of you, no more than one (theta) unit away.
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